五. 进阶

至此,你已经是一个不错的机器人工程师了。但是,如果你想从事研发工作,就需要学习更多专业知识。当然,这部分就跟大家的研究方向关系比较密切了,我没法一一细说。只大概介绍一些。

另外,非常建议入手一本《Springer Handbook of Robotics》[2]。接触一个新的领域时,在 Handbook 里找到相应的章节,通过它了解基本的大纲,并利用提供的参考文献快速补齐知识。

5.1 数学

这时候,你的数学基础基本不允许你更进一步了。所以,你需要补充数学知识。

  • 数值计算方法:很多时候,我们都是通过计算机来实现算法功能的,所以,你必须了解基本的数值计算方法,如数值微分、数值积分等。这部分可以看《Numerical Methods for Engineers》[3]

  • 凸优化:这个世界很多问题都不容易找到解析解,我们得用优化方法来计算。所以,你必须了解如何建立优化模型,并知道如何用代码进行求解。这里,我推荐 Stanford 的公开课《Convex Optimization》

  • 李群李代数:优化方法经常要使用梯度信息,但是,你发现很多时候你不知道怎么定义梯度。李群李代数是一个非常经典的数学工具,可以非常方便地描述 SO(3)、SE(3) 空间中的对象。到这里,你之前对于四元数、角速度之类的疑问将一扫而空。这部分的学习资料,我会在后面补充。

5.2 Modern Robotics

李群李代数对于很多工科学生可能一时无法接受。这里,我推荐从 Modern Robotics 开始,这是一本面向本科生的教材,非常浅显。

你可以在网上找到它的所有信息,Coursera 上也有对应的课程:《Modern Robotics》

上完这门课,你能掌握旋量(Screw)这一全新的建模方式,同时,你会发现机器人运动学、动力学建模变得如此简单、干净。

这时候,你已经触碰到了一点点李群李代数。之后就可以去看一些针对工科生的李群李代数教材,如《Notes on Differential Geometry and Lie Groups, I & II》

5.3 控制

这时候,你可能已经尝试搭建过一些机器人平台,了解了一些基本的控制理论。但是,你发现实际的机器人并不理想,动力学模型可能非常不精确。于是,你需要做机器人的参数辨识。于是,你可以去看 Khalil 的教材《Modeling, identification and control of robots》[4]。其中,你需要了解各种滤波算法(计算加速度)、各种数值优化算法。而且,如果需要对机器人的运动学参数进行标定,你会发现李群李代数可以非常方便地定义各种相关的雅可比。

现在,你有了一个相对精确的动力学模型,但是你发现,在给机器人控制器做轨迹规划的时候,需要给出速度、加速度约束。你感觉这其中有什么不对。是的,机器人系统中实际上并不存在什么速度、加速度约束,我们所有的操作都是针对电机力矩的。也就是说,我们只有力矩约束。

那么,问题来了:在力矩约束下,如何让机器人实现最快的运动。于是你就入了最优控制的坑。在这里,各种数值优化方法将非常有用。

现在你能把单独的一个机器人控制好了,但你发现,机器人一旦跟环境发生接触,只用机器人模型就不够了。你需要对环境进行建模。但是,环境是无法精确建模的。于是,你开始学各种力控阻抗控制之类的内容。相应地、你就可以实现一些所谓协作机器人的功能了:《听说现在协作机器人很火,所以我也做了1/7个》

5.4 运动规划

现在,你能让机器人按照你的要求运动了。但是,你感觉机器人还是太难用了,必须人工指定经过的路径点,否则机器人可能就会与环境发生碰撞。你想,有没有可能让机器人自己找到这些路径点。

于是,你来到了运动规划的领域。

当然,一个很自然的想法是,有没有可能直接构建一个目标函数,用优化的方法计算出需要的轨迹。但是,世界有时候并没有那么可爱。运动规划问题常常是一个非凸问题,无法优化直接求解。所以,对于机械臂,可以有各种 Sampling-based 算法;当然,也有人将其近似成多个凸问题进行优化求解,在比较简单的场景下效果还算不错。

运动规划的大致介绍可以看我以前写过的文章:《运动规划 | 简介篇》

更详细的介绍最好看教材,如《Principles of Robot Motion》[5] 和《Planning Algorithms》[6] 都是不错的教材。

另外,这部分一定要配合着编程来做。The Open Motion Planning Library 是个不错的参考,相信你在学 ROS 的时候也或多或少了解过一些。

只要你理解得足够深入,便会理解前面李群李代数的作用。例如:

(1)运动规划是在 Configuration Space 里进行的,而大多数常见机构的 Configuration Space 都是一个 Lie Group:多关节机器人的关节空间(Torus(n)),无人机(SE(3)),机器人末端操作物体的相关约束(SE(3))。于是,我们只要定义各种 Lie Group 的基本性质,就可以用统一的规划算法来进行规划了。具体可以看 Ompl 里 State space 的使用。

(2)当我们的规划涉及到一些约束,如让机器人末端保持水平(拿着一杯水)。一种方法是用传统的方法。如 OpenRave 里的一个实现:ConstraintPlanning, 在关节空间随机采样一个点,然后投影到最近的任务空间上,之后用 Jacobian 迭代的方式将随机点连接到 RRT 树上。

但是,我们可以从另一个角度看问题。机器人的末端姿态就是一个 SE(3) 李群。保持末端水平,可以认为是一个 R3 空间与 SO(2) 空间的半直积,这也是一个李群。于是,我们可以直接在李群内或者 Tangent Space 上跑一个 RRT,例如 Tangent Bundle RRT[7] 与 AtlasRRT[8]

5.5 机器学习

前面很多工作都是在做建模+辨识的工作。实际上还有一大类工作是基于数据的,也即,给一个通用模型,用数据进行学习拟合。也就是大家常说的机器学习了。

对于此,我个人的学习路径如下:

  • Coursera上吴恩达的《机器学习》,了解基本的机器学习内容。

  • Geoffrey Hinton 的《Neural Networks for Machine Learning》,之前是在 Coursera 上看的,现在似乎只能在 Youtube 上找到了。这门课基本可以把几种经典的神经网络过一遍。

  • 各种开源平台。有了前面的基础,也在 Matlab 中实现过几种经典机器学习算法,你就可以去尝试一些深度学习开源平台了,如 TensorFlow。做机器学习的人太多了,所以资料也非常多,在网上非常容易自学。

当然,我们要知道,我们学机器学习,并不是为了转到 DL 方向上,而是用它来为机器人研究提供工具的:

  • 智能控制:相信学习过智能控制的小伙伴,应该还记得小脑模型之类的网络在控制中的应用;

  • 建模:对于一些不好建模的地方,有时候不妨试试机器学习的方法,例如,用神经网络拟合摩擦力;

  • 视觉:机器人经成需要跟视觉结合在一起,而 DL 在视觉领域发展迅速,有时候借用这一工具,可以非常快地搭建实验原型;

  • 强化学习:这个下章介绍。

5.6 强化学习

如果研究过强化学习,肯定会被其极简的理论所折服:所有的理论衍生自一个 Bellman equation。而且,强化学习非常符合人的直觉。因此,很多人认为强化学习是机器人的未来方向。

对此,我不做过多评论。我只大概介绍如何入门强化学习。

首先,就是看书。Sutton 的《Introduction to reinforcement learning》[9] 可以说是必读圣经了。

你可以在 Github 找到 Python 版本的算法实现 Python Implementation

阅读 Sutton 的书,你可以一步步了解如何从最初的 Bellman 方程推导出 Dynamic Programming、Monte Carlo、TD Learning 等方法。

你知道了强化学习就是要通过不断尝试来学习得到一个从 State 到 Action/Value 的查找表。

于是,你就想,有没有可能简化这个查找表,于是,你知道了有 Function Approximation。如果这个近似函数是神经网络,那么就是现在很火的 Deep Reinforcement Learing 了。

当然,这些不重要。重要的是理解 Markov Decision Processes。你会发现,它不仅可以用来解决运动规划问题(DP ≈ Dijkstra、Monte Carlo ≈ RRT),还可以用来解决任务规划问题。

5.7 最新论文

至此,你已经能够阅读绝大多数最新的论文了。所以,你应该关注类似 RSS、ICRA、IROS 等相关会议,了解机器人领域的最新进展;通过 IJRR、TRO 等期刊学习最新的理论。

当然,你也可以通过 Google Scholar 订阅相应的关键词,它会不定期将最新的论文推送到你的邮箱。

Last updated